# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-(4-Methoxyphenyl)phenanthro-[9,10-d]imidazole methanol solvate

#### Fanpeng Kong, Yunliang Gao, Jibang Ling and Qingjian Liu\*

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: liuqj@sdnu.edu.cn

Received 18 November 2007; accepted 23 November 2007

Key indicators: single-crystal X-ray study: T = 298 K: mean  $\sigma$ (C–C) = 0.004 Å: R factor = 0.055; wR factor = 0.131; data-to-parameter ratio = 14.1.

The title compound,  $C_{22}H_{16}N_2O \cdot CH_4O$ , is a product of the condensation reaction between phenanthrenequinone and 4methoxybenzadehyde. There are two imidazole molecules and two methanol molecules in the asymmetric unit. The phenanthryl and imidazole rings are almost parallel in both molecules, with interplanar angles of 6.65 (1) and 5.40 (3) $^{\circ}$ . The dihedral angles between the imidazole and the attached benzene rings are 5.40 (3) and 6.65 (1) $^{\circ}$  in the two molecules. Intermolecular  $O-H \cdots N$  and  $N-H \cdots O$  hydrogen bonds stabilize the crystal packing.

#### **Related literature**

For an example of fluorescence properties, see: Krebs & Spanggaard (2002). For a related structure, see: Krebs et al. (2001).



### **Experimental**

#### Crystal data

|                                 | $V_{1}$ 7509 (2) $\lambda^{3}$            |
|---------------------------------|-------------------------------------------|
| $C_{22}H_{16}N_2O\cdot CH_4O$   | V = 7508 (2)  A                           |
| $M_r = 356.41$                  | Z = 16                                    |
| Monoclinic, $C2/c$              | Mo $K\alpha$ radiation                    |
| a = 17.755 (3) Å                | $\mu = 0.08 \text{ mm}^{-1}$              |
| b = 17.681 (3) Å                | T = 298 (2) K                             |
| c = 25.131 (4) Å                | $0.47 \times 0.34 \times 0.16 \text{ mm}$ |
| $\beta = 107.890 \ (3)^{\circ}$ |                                           |

#### Data collection

Bruker SMART CCD area detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004)  $T_{\min} = 0.963, T_{\max} = 0.987$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.055$ | 493 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.131$               | H-atom parameters constrained                              |
| S = 0.95                        | $\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 6972 reflections                | $\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$ |

19569 measured reflections

 $R_{\rm int} = 0.050$ 

6972 independent reflections

3852 reflections with  $I > 2\sigma(I)$ 

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                | D-H          | $H \cdots A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------------|--------------|--------------|------------------------|---------------------------|
| $O4-H4A\cdots N4^{i}$                           | 0.82         | 1.94         | 2.755 (2)              | 173                       |
| $O3 - H3A \cdots N2^{n}$<br>$N3 - H3 \cdots O3$ | 0.82<br>0.86 | 1.95<br>1.99 | 2.768 (2)<br>2.840 (3) | 175<br>168                |
| N1-H1···O4                                      | 0.86         | 1.98         | 2.825 (2)              | 166                       |
|                                                 |              |              |                        |                           |

Symmetry codes: (i)  $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$ ; (ii) -x + 1, -y + 1, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge Dr Jianping Ma of Shandong Normal University for his help in the crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SQ2004).

#### References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Krebs, F. C., Lindvold, L. R. & Jorgensen, M. (2001). Tetrahedron Lett. 62, 6753-6757.

Krebs, F. C. & Spanggaard, H. (2002). J. Org. Chem. 67, 7185-7192.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Acta Cryst. (2008). E64, o156 [doi:10.1107/S1600536807062721]

### 2-(4-Methoxyphenyl)phenanthro[9,10-d]imidazole methanol solvate

### F. Kong, Y. Gao, J. Ling and Q. Liu

#### Comment

The 1*H*-phenanthro[9,10 – d]imidazole is a promising building block in the field of molecular materials. It has many desirable properties such as good heat stability, ease of introduction into molecules used as chromophores with high extinction coefficient, readily tunable absorption wavelength, and fluorescent properties. For these reasons, the molecule is used as a large planar synthetic building block in supramolecular chemistry (Krebs & Spanggaard, 2002). As part of our studies of phenanthro[9,10 – d]imidazole derivatives, we report here the structure of the title compound (I), a 1:1 solvate with MeOH.

The bond lengths and angles in (I) agree well with those reported for the related compounds (Krebs *et al.*, 2001). There are two molecules in the asymmetric unit. The phenanthryl and imidazole rings in each molecule are almost parallel, with the interplanar angles being 6.65 (1)° and 5.40 (3)°.

There are intermolecular O4—H4A···N4, O3—H3A···N2, N3—H3···O3, and N1—H1···O4 close contacts (Table 2) in the crystal for (I). These contacts and the cross-linking interactions stabilize the crystal packing.

#### Experimental

A mixture of phenanthrenequinone (4.161 g, 20 mmol), 4-methoxybenzaldehyde (2.723 g, 20 mmol), and ammonium acetate (7.708 g, 100 mmol) in acetic acid (50 ml) was refluxed for 1 h. Upon cooling to room temperature, the precipitate obtained on addition of water was purified by flash column chromatography on silica gel. Single crystals suitable for X-ray diffraction were obtained by recrystallization from methanol solution.

#### Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with aromatic C—H = 0.93 Å and  $U_{iso}(H) = 1.2*U_{eq}(C)$ ; methyl C—H = 0.97 Å and  $U_{iso}(H) = 1.5*U_{eq}(C)$ ; O—H = 0.82 Å and  $U_{iso}(H) = 1.2*U_{eq}(O)$ ; N—H = 0.86 Å and  $U_{iso}(H) = 1.2*U_{eq}(N)$ .

**Figures** 



Fig. 1. The molecular structure of (I) with the atom-numbering scheme and ellipsoids drawn at the 30% probability level. Both independent imidazole and methanol solvate molecules are shown.



Fig. 2. The packing diagram for (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.

## 2-(4-Methoxyphenyl)phenanthro[9,10 - d]imidazole methanol solvate

| Crystal data                    |                                              |
|---------------------------------|----------------------------------------------|
| $C_{22}H_{16}N_2O\cdot CH_4O$   | $F_{000} = 3008$                             |
| $M_r = 356.41$                  | $D_{\rm x} = 1.261 {\rm Mg m}^{-3}$          |
| Monoclinic, C2/c                | Melting point: 527 K                         |
| Hall symbol: -C 2yc             | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 17.755 (3) Å                | Cell parameters from 2357 reflections        |
| b = 17.681 (3)  Å               | $\theta = 2.3 - 20.6^{\circ}$                |
| c = 25.131 (4)  Å               | $\mu = 0.08 \text{ mm}^{-1}$                 |
| $\beta = 107.890 \ (3)^{\circ}$ | T = 298 (2)  K                               |
| $V = 7508 (2) \text{ Å}^3$      | Plan, colourless                             |
| Z = 16                          | $0.47 \times 0.34 \times 0.16 \text{ mm}$    |

#### Data collection

| Bruker SMART CCD area detector diffractometer                  | 6972 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 3852 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.050$                  |
| T = 298(2)  K                                                  | $\theta_{\text{max}} = 25.5^{\circ}$   |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\min} = 1.7^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 2004) | $h = -20 \rightarrow 21$               |
| $T_{\min} = 0.963, T_{\max} = 0.987$                           | $k = -18 \rightarrow 21$               |
| 19569 measured reflections                                     | $l = -30 \rightarrow 30$               |
|                                                                |                                        |

#### Refinement

| Secondary atom site location: difference Fourier map                      |
|---------------------------------------------------------------------------|
| Hydrogen site location: inferred from neighbouring sites                  |
| H-atom parameters constrained                                             |
| $w = 1/[\sigma^2(F_o^2) + (0.0426P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| $\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$                       |
|                                                                           |

493 parameters

 $\Delta \rho_{min} = -0.13 \text{ e} \text{ Å}^{-3}$ 

Primary atom site location: structure-invariant direct methods Extinction correction: none

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2$ >2sigma ( $F^2$ ) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

|     | x             | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|--------------|---------------|---------------------------|
| C1  | 0.00685 (14)  | 0.41421 (11) | 0.03594 (9)   | 0.0457 (6)                |
| C2  | -0.05442 (14) | 0.42635 (12) | 0.06132 (10)  | 0.0488 (6)                |
| C3  | -0.13452 (14) | 0.41336 (13) | 0.03316 (11)  | 0.0612 (7)                |
| H3B | -0.1494       | 0.3949       | -0.0033       | 0.073*                    |
| C4  | -0.19126 (16) | 0.42739 (15) | 0.05849 (12)  | 0.0730 (8)                |
| H4  | -0.2443       | 0.4185       | 0.0394        | 0.088*                    |
| C5  | -0.16933 (17) | 0.45483 (15) | 0.11244 (13)  | 0.0717 (8)                |
| Н5  | -0.2078       | 0.4641       | 0.1297        | 0.086*                    |
| C6  | -0.09215 (16) | 0.46835 (13) | 0.14050 (11)  | 0.0637 (7)                |
| Н6  | -0.0789       | 0.4868       | 0.1769        | 0.076*                    |
| C7  | -0.03134 (15) | 0.45537 (12) | 0.11639 (10)  | 0.0518 (6)                |
| C8  | 0.05131 (15)  | 0.47244 (12) | 0.14516 (10)  | 0.0521 (6)                |
| C9  | 0.07707 (17)  | 0.50153 (15) | 0.19970 (11)  | 0.0696 (8)                |
| Н9  | 0.0399        | 0.5095       | 0.2184        | 0.084*                    |
| C10 | 0.15405 (19)  | 0.51847 (16) | 0.22634 (12)  | 0.0838 (9)                |
| H10 | 0.1687        | 0.5369       | 0.2628        | 0.101*                    |
| C11 | 0.21063 (18)  | 0.50848 (17) | 0.19957 (12)  | 0.0917 (10)               |
| H11 | 0.2633        | 0.5203       | 0.2177        | 0.110*                    |
| C12 | 0.18846 (16)  | 0.48101 (15) | 0.14599 (11)  | 0.0729 (8)                |
| H12 | 0.2265        | 0.4751       | 0.1278        | 0.087*                    |
| C13 | 0.11032 (15)  | 0.46176 (12) | 0.11817 (10)  | 0.0523 (6)                |
| C14 | 0.08366 (13)  | 0.43179 (11) | 0.06299 (9)   | 0.0451 (6)                |
| C15 | 0.07191 (14)  | 0.38688 (12) | -0.02125 (10) | 0.0475 (6)                |
| C16 | 0.09225 (14)  | 0.36201 (12) | -0.07017 (10) | 0.0481 (6)                |
| C17 | 0.03205 (15)  | 0.34411 (13) | -0.11865 (10) | 0.0591 (7)                |
| H17 | -0.0203       | 0.3476       | -0.1189       | 0.071*                    |
| C18 | 0.04807 (16)  | 0.32133 (13) | -0.16623 (10) | 0.0641 (7)                |
| H18 | 0.0067        | 0.3094       | -0.1981       | 0.077*                    |
| C19 | 0.12526 (17)  | 0.31611 (13) | -0.16687 (10) | 0.0589 (7)                |
| C20 | 0.18619 (15)  | 0.33390 (13) | -0.11954 (10) | 0.0597 (7)                |
|     |               |              |               |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H20  | 0.2384       | 0.3305       | -0.1197       | 0.072*      |
|------|--------------|--------------|---------------|-------------|
| C21  | 0.16935 (15) | 0.35687 (12) | -0.07173 (10) | 0.0568 (7)  |
| H21  | 0.2108       | 0.3691       | -0.0400       | 0.068*      |
| C22  | 0.21299 (17) | 0.28221 (18) | -0.21888 (12) | 0.1021 (11) |
| H22A | 0.2405       | 0.3297       | -0.2122       | 0.153*      |
| H22B | 0.2110       | 0.2637       | -0.2552       | 0.153*      |
| H22C | 0.2404       | 0.2464       | -0.1909       | 0.153*      |
| C23  | 0.59455 (13) | 0.43889 (12) | 0.05693 (9)   | 0.0468 (6)  |
| C24  | 0.58717 (13) | 0.43623 (13) | 0.11163 (10)  | 0.0525 (6)  |
| C25  | 0.57882 (15) | 0.36890 (15) | 0.13888 (11)  | 0.0660 (7)  |
| H25  | 0.5761       | 0.3229       | 0.1204        | 0.079*      |
| C26  | 0.57471 (17) | 0.37032 (18) | 0.19234 (12)  | 0.0803 (9)  |
| H26  | 0.5697       | 0.3255       | 0.2103        | 0.096*      |
| C27  | 0.57810 (17) | 0.43864 (19) | 0.21961 (12)  | 0.0822 (9)  |
| H27  | 0.5763       | 0.4395       | 0.2562        | 0.099*      |
| C28  | 0.58407 (16) | 0.50466 (17) | 0.19342 (11)  | 0.0754 (8)  |
| H28  | 0.5845       | 0.5501       | 0.2122        | 0.090*      |
| C29  | 0.58955 (14) | 0.50622 (14) | 0.13907 (10)  | 0.0554 (6)  |
| C30  | 0.59432 (13) | 0.57775 (14) | 0.11076 (11)  | 0.0563 (6)  |
| C31  | 0.59150 (15) | 0.64903 (16) | 0.13541 (12)  | 0.0706 (8)  |
| H31  | 0.5885       | 0.6515       | 0.1717        | 0.085*      |
| C32  | 0.59311 (17) | 0.71454 (16) | 0.10672 (15)  | 0.0826 (9)  |
| H32  | 0.5905       | 0.7608       | 0.1236        | 0.099*      |
| C33  | 0.59845 (17) | 0.71294 (16) | 0.05339 (14)  | 0.0807 (9)  |
| Н33  | 0.5998       | 0.7579       | 0.0345        | 0.097*      |
| C34  | 0.60174 (15) | 0.64507 (14) | 0.02809 (12)  | 0.0681 (7)  |
| H34  | 0.6051       | 0.6442       | -0.0081       | 0.082*      |
| C35  | 0.60016 (13) | 0.57697 (13) | 0.05601 (10)  | 0.0531 (6)  |
| C36  | 0.60142 (13) | 0.50504 (12) | 0.03021 (10)  | 0.0470 (6)  |
| C37  | 0.60503 (13) | 0.41509 (13) | -0.02666 (9)  | 0.0472 (6)  |
| C38  | 0.60895 (13) | 0.37375 (13) | -0.07583 (9)  | 0.0504 (6)  |
| C39  | 0.61133 (15) | 0.29564 (14) | -0.07878 (10) | 0.0606 (7)  |
| H39  | 0.6117       | 0.2673       | -0.0475       | 0.073*      |
| C40  | 0.61311 (15) | 0.25848 (14) | -0.12690 (11) | 0.0659(7)   |
| H40  | 0.6144       | 0.2059       | -0.1278       | 0.079*      |
| C41  | 0.61303 (17) | 0.29935 (17) | -0.17316 (11) | 0.0722 (8)  |
| C42  | 0.61049 (19) | 0.37649 (17) | -0.17058(11)  | 0.0900 (10) |
| H42  | 0.6103       | 0.4046       | -0.2019       | 0.108*      |
| C43  | 0.60826 (17) | 0.41370 (15) | -0.12323(11)  | 0.0749 (8)  |
| H43  | 0.6063       | 0.4663       | -0.1230       | 0.090*      |
| C44  | 0 6210 (3)   | 0 1907 (2)   | -0.22710(14)  | 0 1336 (16) |
| H44A | 0.6685       | 0.1726       | -0.2001       | 0.200*      |
| H44B | 0.6219       | 0.1779       | -0.2640       | 0.200*      |
| H44C | 0.5759       | 0.1677       | -0.2203       | 0.200*      |
| C45  | 0 3353 (2)   | 0 36715 (17) | 0 10140 (14)  | 0.1058 (12) |
| H45A | 0.3887       | 0.3845       | 0.1178        | 0.159*      |
| H45B | 0.3358       | 0.3191       | 0.0837        | 0.159*      |
| H45C | 0.3103       | 0.3618       | 0.1301        | 0.159*      |
| C46  | 0.67782 (19) | 0.20684 (18) | 0.09661 (14)  | 0.1066 (11) |
|      | < - /        |              |               | - ( -)      |

| H46A | 0.6914        | 0.2432       | 0.1264       | 0.160*     |
|------|---------------|--------------|--------------|------------|
| H46B | 0.7200        | 0.2035       | 0.0803       | 0.160*     |
| H46C | 0.6698        | 0.1583       | 0.1111       | 0.160*     |
| N1   | 0.59680 (11)  | 0.38208 (10) | 0.02006 (7)  | 0.0503 (5) |
| H1   | 0.5936        | 0.3344       | 0.0256       | 0.060*     |
| N2   | 0.60849 (11)  | 0.48982 (10) | -0.02171 (8) | 0.0515 (5) |
| N3   | 0.12500 (11)  | 0.41427 (10) | 0.02640 (7)  | 0.0496 (5) |
| Н3   | 0.1751        | 0.4196       | 0.0324       | 0.060*     |
| N4   | -0.00083 (11) | 0.38598 (10) | -0.01671 (7) | 0.0498 (5) |
| 01   | 0.61638 (14)  | 0.26985 (12) | -0.22247 (8) | 0.1066 (8) |
| O2   | 0.13454 (11)  | 0.29238 (10) | -0.21638 (7) | 0.0811 (6) |
| O3   | 0.29293 (9)   | 0.42005 (10) | 0.06127 (7)  | 0.0671 (5) |
| H3A  | 0.3239        | 0.4444       | 0.0497       | 0.101*     |
| O4   | 0.60764 (11)  | 0.22969 (9)  | 0.05543 (8)  | 0.0670 (5) |
| H4A  | 0.5773        | 0.1936       | 0.0467       | 0.100*     |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C1  | 0.0442 (16) | 0.0433 (13) | 0.0494 (15) | -0.0028 (11) | 0.0143 (13) | 0.0034 (11)  |
| C2  | 0.0448 (16) | 0.0468 (14) | 0.0543 (16) | -0.0003 (11) | 0.0144 (13) | 0.0054 (11)  |
| C3  | 0.0467 (17) | 0.0692 (17) | 0.0664 (18) | 0.0000 (13)  | 0.0154 (15) | -0.0022 (13) |
| C4  | 0.0459 (18) | 0.087 (2)   | 0.084 (2)   | -0.0004 (15) | 0.0162 (17) | -0.0036 (16) |
| C5  | 0.051 (2)   | 0.084 (2)   | 0.087 (2)   | 0.0026 (15)  | 0.0304 (18) | -0.0023 (16) |
| C6  | 0.063 (2)   | 0.0697 (18) | 0.0632 (18) | 0.0026 (14)  | 0.0262 (17) | -0.0007 (13) |
| C7  | 0.0510 (17) | 0.0503 (14) | 0.0555 (16) | -0.0016 (12) | 0.0183 (14) | 0.0050 (11)  |
| C8  | 0.0555 (18) | 0.0530 (15) | 0.0488 (15) | -0.0019 (12) | 0.0173 (14) | 0.0027 (11)  |
| С9  | 0.063 (2)   | 0.092 (2)   | 0.0567 (18) | -0.0030 (16) | 0.0230 (16) | -0.0077 (14) |
| C10 | 0.069 (2)   | 0.118 (3)   | 0.0590 (19) | -0.0111 (19) | 0.0118 (18) | -0.0222 (16) |
| C11 | 0.060 (2)   | 0.138 (3)   | 0.073 (2)   | -0.0167 (18) | 0.0150 (18) | -0.0346 (19) |
| C12 | 0.055 (2)   | 0.102 (2)   | 0.0629 (19) | -0.0105 (16) | 0.0195 (16) | -0.0223 (15) |
| C13 | 0.0489 (17) | 0.0533 (15) | 0.0523 (16) | -0.0058 (12) | 0.0123 (14) | -0.0017 (11) |
| C14 | 0.0455 (16) | 0.0445 (14) | 0.0473 (15) | -0.0063 (11) | 0.0170 (13) | 0.0016 (10)  |
| C15 | 0.0456 (16) | 0.0460 (14) | 0.0501 (15) | -0.0043 (11) | 0.0138 (13) | 0.0033 (11)  |
| C16 | 0.0473 (16) | 0.0485 (14) | 0.0473 (15) | -0.0077 (11) | 0.0128 (13) | 0.0022 (11)  |
| C17 | 0.0495 (17) | 0.0760 (18) | 0.0534 (16) | -0.0096 (13) | 0.0184 (14) | 0.0026 (13)  |
| C18 | 0.0570 (19) | 0.0855 (19) | 0.0462 (16) | -0.0162 (15) | 0.0105 (14) | -0.0049 (13) |
| C19 | 0.066 (2)   | 0.0627 (16) | 0.0512 (17) | -0.0064 (14) | 0.0231 (16) | -0.0037 (12) |
| C20 | 0.0525 (18) | 0.0690 (17) | 0.0592 (17) | -0.0027 (13) | 0.0197 (15) | -0.0057 (13) |
| C21 | 0.0506 (17) | 0.0628 (16) | 0.0551 (16) | -0.0064 (12) | 0.0131 (14) | -0.0037 (12) |
| C22 | 0.081 (3)   | 0.154 (3)   | 0.082 (2)   | 0.006 (2)    | 0.041 (2)   | -0.020 (2)   |
| C23 | 0.0355 (14) | 0.0550 (15) | 0.0495 (15) | -0.0035 (11) | 0.0124 (12) | 0.0043 (12)  |
| C24 | 0.0398 (15) | 0.0668 (17) | 0.0517 (15) | -0.0008 (12) | 0.0153 (13) | 0.0077 (13)  |
| C25 | 0.069 (2)   | 0.0697 (18) | 0.0633 (18) | -0.0016 (14) | 0.0257 (16) | 0.0096 (13)  |
| C26 | 0.089 (2)   | 0.093 (2)   | 0.065 (2)   | -0.0011 (17) | 0.0319 (19) | 0.0168 (17)  |
| C27 | 0.086 (2)   | 0.109 (3)   | 0.0541 (19) | -0.0026 (19) | 0.0253 (18) | 0.0034 (18)  |
| C28 | 0.071 (2)   | 0.096 (2)   | 0.0592 (19) | -0.0017 (16) | 0.0200 (16) | -0.0068 (16) |
| C29 | 0.0391 (15) | 0.0707 (18) | 0.0556 (16) | -0.0012 (12) | 0.0134 (13) | -0.0030 (13) |

| C30 | 0.0380 (15) | 0.0638 (17) | 0.0649 (18) | -0.0021 (12) | 0.0126 (13) | -0.0049 (13) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C31 | 0.0551 (19) | 0.076 (2)   | 0.081 (2)   | 0.0004 (15)  | 0.0211 (17) | -0.0118 (16) |
| C32 | 0.071 (2)   | 0.063 (2)   | 0.115 (3)   | 0.0017 (16)  | 0.029 (2)   | -0.0114 (18) |
| C33 | 0.075 (2)   | 0.060 (2)   | 0.110 (3)   | 0.0066 (15)  | 0.032 (2)   | 0.0086 (17)  |
| C34 | 0.0615 (19) | 0.0601 (18) | 0.082 (2)   | 0.0070 (14)  | 0.0211 (16) | 0.0093 (15)  |
| C35 | 0.0343 (14) | 0.0578 (16) | 0.0646 (17) | 0.0017 (12)  | 0.0114 (13) | 0.0033 (13)  |
| C36 | 0.0315 (14) | 0.0555 (16) | 0.0537 (16) | 0.0005 (11)  | 0.0124 (12) | 0.0065 (12)  |
| C37 | 0.0374 (14) | 0.0547 (16) | 0.0485 (15) | -0.0067 (11) | 0.0117 (12) | 0.0088 (12)  |
| C38 | 0.0416 (15) | 0.0579 (16) | 0.0497 (16) | -0.0085 (12) | 0.0108 (13) | 0.0066 (12)  |
| C39 | 0.0669 (19) | 0.0655 (18) | 0.0549 (17) | -0.0066 (14) | 0.0267 (15) | 0.0082 (13)  |
| C40 | 0.075 (2)   | 0.0658 (17) | 0.0630 (19) | -0.0090 (14) | 0.0296 (16) | -0.0002 (14) |
| C41 | 0.086 (2)   | 0.082 (2)   | 0.0515 (18) | -0.0163 (17) | 0.0256 (17) | -0.0037 (15) |
| C42 | 0.138 (3)   | 0.083 (2)   | 0.0513 (19) | -0.022 (2)   | 0.033 (2)   | 0.0096 (15)  |
| C43 | 0.102 (2)   | 0.0657 (18) | 0.0552 (18) | -0.0145 (16) | 0.0213 (17) | 0.0077 (14)  |
| C44 | 0.224 (5)   | 0.101 (3)   | 0.099 (3)   | -0.033 (3)   | 0.082 (3)   | -0.034 (2)   |
| C45 | 0.126 (3)   | 0.095 (2)   | 0.109 (3)   | 0.024 (2)    | 0.054 (3)   | 0.039 (2)    |
| C46 | 0.070 (2)   | 0.126 (3)   | 0.103 (3)   | 0.009 (2)    | -0.003 (2)  | -0.017 (2)   |
| N1  | 0.0485 (13) | 0.0509 (12) | 0.0520 (13) | -0.0066 (10) | 0.0159 (11) | 0.0070 (10)  |
| N2  | 0.0432 (13) | 0.0544 (13) | 0.0557 (13) | -0.0025 (9)  | 0.0132 (11) | 0.0076 (9)   |
| N3  | 0.0436 (12) | 0.0558 (12) | 0.0510 (12) | -0.0090 (9)  | 0.0169 (11) | -0.0015 (9)  |
| N4  | 0.0463 (13) | 0.0532 (12) | 0.0492 (13) | -0.0027 (9)  | 0.0135 (11) | 0.0031 (9)   |
| 01  | 0.167 (2)   | 0.1000 (17) | 0.0643 (14) | -0.0238 (15) | 0.0526 (15) | -0.0116 (11) |
| 02  | 0.0743 (15) | 0.1156 (16) | 0.0573 (12) | -0.0037 (11) | 0.0261 (11) | -0.0177 (10) |
| 03  | 0.0538 (12) | 0.0723 (12) | 0.0782 (13) | -0.0097 (10) | 0.0250 (11) | 0.0134 (9)   |
| O4  | 0.0602 (13) | 0.0616 (11) | 0.0740 (13) | -0.0136 (9)  | 0.0130 (11) | 0.0048 (9)   |

## Geometric parameters (Å, °)

| C1—C14  | 1.360 (3) | C25—H25 | 0.9300    |
|---------|-----------|---------|-----------|
| C1—N4   | 1.381 (3) | C26—C27 | 1.381 (4) |
| C1—C2   | 1.436 (3) | С26—Н26 | 0.9300    |
| C2—C3   | 1.399 (3) | C27—C28 | 1.360 (3) |
| C2—C7   | 1.414 (3) | С27—Н27 | 0.9300    |
| C3—C4   | 1.370 (3) | C28—C29 | 1.399 (3) |
| С3—Н3В  | 0.9300    | C28—H28 | 0.9300    |
| C4—C5   | 1.379 (3) | C29—C30 | 1.466 (3) |
| C4—H4   | 0.9300    | C30—C35 | 1.411 (3) |
| C5—C6   | 1.356 (3) | C30—C31 | 1.412 (3) |
| С5—Н5   | 0.9300    | C31—C32 | 1.369 (3) |
| C6—C7   | 1.410 (3) | C31—H31 | 0.9300    |
| С6—Н6   | 0.9300    | C32—C33 | 1.373 (4) |
| С7—С8   | 1.454 (3) | С32—Н32 | 0.9300    |
| C8—C9   | 1.403 (3) | C33—C34 | 1.368 (3) |
| C8—C13  | 1.425 (3) | С33—Н33 | 0.9300    |
| C9—C10  | 1.358 (4) | C34—C35 | 1.398 (3) |
| С9—Н9   | 0.9300    | С34—Н34 | 0.9300    |
| C10—C11 | 1.382 (3) | C35—C36 | 1.431 (3) |
| С10—Н10 | 0.9300    | C36—N2  | 1.375 (3) |
| C11—C12 | 1.371 (3) | C37—N2  | 1.327 (3) |
|         |           |         |           |

| C11—H11   | 0.9300      | C37—N1      | 1.358 (2) |
|-----------|-------------|-------------|-----------|
| C12—C13   | 1.391 (3)   | C37—C38     | 1.456 (3) |
| C12—H12   | 0.9300      | C38—C43     | 1.382 (3) |
| C13—C14   | 1.423 (3)   | C38—C39     | 1.384 (3) |
| C14—N3    | 1.377 (2)   | C39—C40     | 1.385 (3) |
| C15—N4    | 1.331 (3)   | С39—Н39     | 0.9300    |
| C15—N3    | 1.365 (3)   | C40—C41     | 1.368 (3) |
| C15—C16   | 1.452 (3)   | C40—H40     | 0.9300    |
| C16—C21   | 1.384 (3)   | C41—O1      | 1.363 (3) |
| C16—C17   | 1.388 (3)   | C41—C42     | 1.367 (3) |
| C17—C18   | 1.372 (3)   | C42—C43     | 1.371 (3) |
| C17—H17   | 0.9300      | C42—H42     | 0.9300    |
| C18—C19   | 1.379 (3)   | C43—H43     | 0.9300    |
| C18—H18   | 0.9300      | C44—O1      | 1.408 (3) |
| C19—O2    | 1.370 (3)   | C44—H44A    | 0.9600    |
| C19—C20   | 1.376 (3)   | C44—H44B    | 0.9600    |
| C20—C21   | 1.385 (3)   | C44—H44C    | 0.9600    |
| C20—H20   | 0.9300      | C45—O3      | 1.411 (3) |
| C21—H21   | 0.9300      | C45—H45A    | 0.9600    |
| C22—O2    | 1.425 (3)   | C45—H45B    | 0.9600    |
| C22—H22A  | 0.9600      | C45—H45C    | 0.9600    |
| С22—Н22В  | 0.9600      | C46—O4      | 1.412 (3) |
| C22—H22C  | 0.9600      | C46—H46A    | 0.9600    |
| C23—C36   | 1.373 (3)   | C46—H46B    | 0.9600    |
| C23—N1    | 1.375 (3)   | C46—H46C    | 0.9600    |
| C23—C24   | 1.421 (3)   | N1—H1       | 0.8600    |
| C24—C25   | 1.404 (3)   | N3—H3       | 0.8600    |
| C24—C29   | 1.411 (3)   | ОЗ—НЗА      | 0.8200    |
| C25—C26   | 1.368 (3)   | O4—H4A      | 0.8200    |
| C14—C1—N4 | 110.51 (19) | C28—C27—C26 | 120.6 (3) |
| C14—C1—C2 | 121.6 (2)   | С28—С27—Н27 | 119.7     |
| N4—C1—C2  | 127.9 (2)   | С26—С27—Н27 | 119.7     |
| C3—C2—C7  | 119.9 (2)   | C27—C28—C29 | 121.9 (3) |
| C3—C2—C1  | 122.8 (2)   | C27—C28—H28 | 119.0     |
| C7—C2—C1  | 117.2 (2)   | C29—C28—H28 | 119.0     |
| C4—C3—C2  | 120.9 (2)   | C28—C29—C24 | 117.3 (2) |
| С4—С3—Н3В | 119.5       | C28—C29—C30 | 121.5 (2) |
| С2—С3—Н3В | 119.5       | C24—C29—C30 | 121.1 (2) |
| C3—C4—C5  | 119.7 (3)   | C35—C30—C31 | 117.4 (2) |
| C3—C4—H4  | 120.2       | C35—C30—C29 | 119.8 (2) |
| С5—С4—Н4  | 120.2       | C31—C30—C29 | 122.8 (2) |
| C6—C5—C4  | 120.6 (3)   | C32—C31—C30 | 121.0 (3) |
| C6—C5—H5  | 119.7       | C32—C31—H31 | 119.5     |
| C4—C5—H5  | 119.7       | C30—C31—H31 | 119.5     |
| C5—C6—C7  | 122.2 (3)   | C31—C32—C33 | 121.0 (3) |
| C5—C6—H6  | 118.9       | C31—C32—H32 | 119.5     |
| C'/C6H6   | 118.9       | C33—C32—H32 | 119.5     |
| C6—C7—C2  | 116.7 (2)   | C34—C33—C32 | 119.8 (3) |
| C6—C7—C8  | 122.8 (2)   | С34—С33—Н33 | 120.1     |

| C2—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.4 (2)            | С32—С33—Н33                                          | 120.1       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|-------------|
| C9—C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116.6 (2)            | C33—C34—C35                                          | 120.8 (3)   |
| C9—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.6 (2)            | C33—C34—H34                                          | 119.6       |
| C13—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.9 (2)            | С35—С34—Н34                                          | 119.6       |
| C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.7 (2)            | C34—C35—C30                                          | 120.0 (2)   |
| С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.7                | C34—C35—C36                                          | 122.2 (2)   |
| С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.7                | C30—C35—C36                                          | 117.8 (2)   |
| C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.3 (3)            | C23—C36—N2                                           | 110.2 (2)   |
| С9—С10—Н10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.9                | C23—C36—C35                                          | 121.3 (2)   |
| C11—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.9                | N2-C36-C35                                           | 128.5 (2)   |
| C12-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.4 (3)            | N2                                                   | 111.16 (19) |
| C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3                | N2-C37-C38                                           | 124.52 (19) |
| C10-C11-H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3                | N1—C37—C38                                           | 124.3 (2)   |
| C11—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.5 (2)            | C43—C38—C39                                          | 117.1 (2)   |
| C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.3                | C43—C38—C37                                          | 119.0 (2)   |
| C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.3                | C39—C38—C37                                          | 123.8 (2)   |
| C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124.3 (2)            | C38—C39—C40                                          | 121.9 (2)   |
| C12—C13—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.6 (2)            | С38—С39—Н39                                          | 119.0       |
| C14—C13—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 116.1 (2)            | С40—С39—Н39                                          | 119.0       |
| C1—C14—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105.9 (2)            | C41—C40—C39                                          | 119.8 (2)   |
| C1—C14—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123.7 (2)            | C41—C40—H40                                          | 120.1       |
| N3—C14—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130.5 (2)            | C39—C40—H40                                          | 120.1       |
| N4—C15—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.84 (19)          | O1—C41—C42                                           | 115.9 (2)   |
| N4-C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124.7 (2)            | 01-C41-C40                                           | 125.6 (3)   |
| N3-C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124.5 (2)            | C42—C41—C40                                          | 118.6 (2)   |
| $C_{21}$ $C_{16}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117 5 (2)            | C41-C42-C43                                          | 122.0(2)    |
| $C_{21} - C_{16} - C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123 3 (2)            | C41—C42—H42                                          | 119.0       |
| $C_{17} - C_{16} - C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.2 (2)            | C43-C42-H42                                          | 119.0       |
| C18 - C17 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.5 (2)            | C42-C43-C38                                          | 120 5 (2)   |
| C18 - C17 - H17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.3                | C42—C43—H43                                          | 119.7       |
| $C_{16}$ $C_{17}$ $H_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.3                | C38—C43—H43                                          | 119.7       |
| $C_{17}$ $C_{18}$ $C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.2(2)             | 01 - C44 - H44A                                      | 109.5       |
| C17 - C18 - H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.9                | O1-C44-H44B                                          | 109.5       |
| C19-C18-H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.9                | H44A—C44—H44B                                        | 109.5       |
| $0^{2}-0^{19}-0^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115.5<br>125.0(2)    | $\Omega_1 - C_{44} - H_{44C}$                        | 109.5       |
| 02 - C19 - C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125.0(2)<br>115.4(2) | H44A_C44_H44C                                        | 109.5       |
| $C_{2}^{2}$ $C_{19}^{19}$ $C_{18}^{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.7(2)             |                                                      | 109.5       |
| $C_{20} = C_{19} = C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7(2)<br>110.7(2) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5       |
| $C_{19} = C_{20} = C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7 (2)            | $O_3 = C_{45} = H_{45R}$                             | 109.5       |
| $C_{1}^{2} = C_{2}^{2} = C_{12}^{2} + C_{20}^{2} = C_{12}^{2} + C_{20}^{2} + C_{20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.2                | $H_{45A} = C_{45} = H_{45B}$                         | 109.5       |
| $C_{21} = C_{20} = 1120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.2<br>121.5(2)    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5       |
| $C_{10} = C_{21} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.3 (2)            |                                                      | 109.5       |
| $C_{10} = C_{21} = H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.2                | H45A C45 H45C                                        | 109.5       |
| $C_{20} = C_{21} = H_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.2                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5       |
| $O_2 = O_2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5                | $O_4 = C_4 O_{-1140A}$                               | 109.3       |
| $U_2 = U_2 Z_2 = \Pi_2 Z_D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                | $U_4 - U_4 - U_4 U_6 D$                              | 109.3       |
| $\Pi 22A - U22 - \Pi 22B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                | $\Box 40A - C40 - \Pi 40B$                           | 109.3       |
| 02 - 022 - 0220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                | $U_4 - U_4 U_1 - \Pi_4 U_1$                          | 109.3       |
| $\frac{1122A}{122} = \frac{1122}{122} = 1$ | 109.5                |                                                      | 109.3       |
| 11220-022-11220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                | 1140D-C40-1140C                                      | 109.5       |

| C36—C23—N1                            | 105.50 (19)  | C37—N1—C23                                | 107.56 (18) |
|---------------------------------------|--------------|-------------------------------------------|-------------|
| C36—C23—C24                           | 123.4 (2)    | C37—N1—H1                                 | 126.2       |
| N1—C23—C24                            | 131.1 (2)    | C23—N1—H1                                 | 126.2       |
| C25—C24—C29                           | 119.8 (2)    | C37—N2—C36                                | 105.59 (17) |
| C25—C24—C23                           | 123.7 (2)    | C15—N3—C14                                | 107.44 (18) |
| C29—C24—C23                           | 116.5 (2)    | C15—N3—H3                                 | 126.3       |
| C26—C25—C24                           | 120.6 (3)    | C14—N3—H3                                 | 126.3       |
| С26—С25—Н25                           | 119.7        | C15—N4—C1                                 | 105.36 (19) |
| С24—С25—Н25                           | 119.7        | C41—O1—C44                                | 118.4 (2)   |
| C25—C26—C27                           | 119.8 (3)    | C19—O2—C22                                | 118.1 (2)   |
| C25—C26—H26                           | 120.1        | C45—O3—H3A                                | 109.5       |
| С27—С26—Н26                           | 120.1        | C46—O4—H4A                                | 109.5       |
| C14—C1—C2—C3                          | 175.8 (2)    | C27—C28—C29—C30                           | 178.7 (2)   |
| N4—C1—C2—C3                           | -3.1 (3)     | C25—C24—C29—C28                           | 0.6 (4)     |
| C14—C1—C2—C7                          | -1.8(3)      | C23—C24—C29—C28                           | -178.7(2)   |
| N4-C1-C2-C7                           | 179.4 (2)    | $C_{25}$ $C_{24}$ $C_{29}$ $C_{30}$       | -177.0(2)   |
| C7-C2-C3-C4                           | -0.9(3)      | $C_{23}$ $C_{24}$ $C_{29}$ $C_{30}$       | 3.8 (3)     |
| C1 - C2 - C3 - C4                     | -178.4(2)    | C28—C29—C30—C35                           | 179.7 (2)   |
| $C_2 - C_3 - C_4 - C_5$               | 0.1 (4)      | $C_{24}$ $C_{29}$ $C_{30}$ $C_{35}$       | -2.8(3)     |
| $C_{3}$ — $C_{4}$ — $C_{5}$ — $C_{6}$ | 03(4)        | $C_{28} = C_{29} = C_{30} = C_{31}$       | -1.8(4)     |
| C4-C5-C6-C7                           | 0.1 (4)      | $C_{24} = C_{29} = C_{30} = C_{31}$       | 175 7 (2)   |
| $C_{5} - C_{6} - C_{7} - C_{2}$       | -0.8(3)      | $C_{35} = C_{30} = C_{31} = C_{32}$       | 10(4)       |
| $C_{5} - C_{6} - C_{7} - C_{8}$       | 177 5 (2)    | $C_{29} = C_{30} = C_{31} = C_{32}$       | -177.5(2)   |
| $C_{3}$ $C_{2}$ $C_{7}$ $C_{6}$       | 12(3)        | $C_{30}$ $C_{31}$ $C_{32}$ $C_{33}$       | -0.8(4)     |
| C1 - C2 - C7 - C6                     | 178 88 (19)  | $C_{31} - C_{32} - C_{33} - C_{34}$       | 0 4 (4)     |
| $C_3 - C_2 - C_7 - C_8$               | -177.1(2)    | $C_{32}$ $C_{33}$ $C_{34}$ $C_{35}$       | -0.3(4)     |
| C1 - C2 - C7 - C8                     | 0.5 (3)      | $C_{33}$ — $C_{34}$ — $C_{35}$ — $C_{30}$ | 0.6 (4)     |
| C6—C7—C8—C9                           | 1.5 (3)      | C33—C34—C35—C36                           | 178.3 (2)   |
| C2—C7—C8—C9                           | 179.8 (2)    | C31—C30—C35—C34                           | -0.9 (3)    |
| C6-C7-C8-C13                          | -177.0(2)    | C29—C30—C35—C34                           | 177.6 (2)   |
| C2-C7-C8-C13                          | 1.3 (3)      | C31—C30—C35—C36                           | -178.8(2)   |
| C13—C8—C9—C10                         | -0.5 (4)     | C29—C30—C35—C36                           | -0.2 (3)    |
| C7—C8—C9—C10                          | -179.1 (3)   | N1—C23—C36—N2                             | -0.5 (2)    |
| C8—C9—C10—C11                         | 1.1 (5)      | C24—C23—C36—N2                            | 179.3 (2)   |
| C9-C10-C11-C12                        | -0.3(5)      | N1-C23-C36-C35                            | 179.0 (2)   |
| C10-C11-C12-C13                       | -1.0(5)      | C24—C23—C36—C35                           | -1.1(3)     |
| C11—C12—C13—C14                       | -178.9(3)    | C34—C35—C36—C23                           | -175.6 (2)  |
| C11—C12—C13—C8                        | 1.6 (4)      | C30—C35—C36—C23                           | 2.1 (3)     |
| C9—C8—C13—C12                         | -0.8(3)      | C34-C35-C36-N2                            | 3.8 (4)     |
| C7—C8—C13—C12                         | 177.8 (2)    | C30—C35—C36—N2                            | -178.4(2)   |
| C9—C8—C13—C14                         | 179.6 (2)    | N2—C37—C38—C43                            | -6.9 (3)    |
| C7—C8—C13—C14                         | -1.8 (3)     | N1—C37—C38—C43                            | 172.7 (2)   |
| N4—C1—C14—N3                          | 0.1 (2)      | N2—C37—C38—C39                            | 174.9 (2)   |
| C2-C1-C14-N3                          | -178.94 (18) | N1—C37—C38—C39                            | -5.6 (4)    |
| N4-C1-C14-C13                         | -179.68 (19) | C43—C38—C39—C40                           | 0.1 (4)     |
| C2-C1-C14-C13                         | 1.3 (3)      | C37—C38—C39—C40                           | 178.4 (2)   |
| C12—C13—C14—C1                        | -179.0 (2)   | C38—C39—C40—C41                           | 0.4 (4)     |
| C8—C13—C14—C1                         | 0.5 (3)      | C39—C40—C41—O1                            | 178.5 (3)   |
| C12—C13—C14—N3                        | 1.3 (4)      | C39—C40—C41—C42                           | -0.6 (4)    |
|                                       |              |                                           |             |

| C8—C13—C14—N3   | -179.2 (2) | O1—C41—C42—C43  | -179.0 (3)   |
|-----------------|------------|-----------------|--------------|
| N4-C15-C16-C21  | -173.7 (2) | C40—C41—C42—C43 | 0.2 (5)      |
| N3-C15-C16-C21  | 6.2 (3)    | C41—C42—C43—C38 | 0.4 (5)      |
| N4-C15-C16-C17  | 8.1 (3)    | C39—C38—C43—C42 | -0.5 (4)     |
| N3-C15-C16-C17  | -172.0 (2) | C37—C38—C43—C42 | -178.9 (3)   |
| C21—C16—C17—C18 | 0.7 (3)    | N2-C37-N1-C23   | 0.2 (2)      |
| C15-C16-C17-C18 | 179.1 (2)  | C38—C37—N1—C23  | -179.4 (2)   |
| C16-C17-C18-C19 | -0.4 (4)   | C36-C23-N1-C37  | 0.2 (2)      |
| C17—C18—C19—O2  | 179.6 (2)  | C24—C23—N1—C37  | -179.7 (2)   |
| C17—C18—C19—C20 | 0.0 (4)    | N1-C37-N2-C36   | -0.6 (2)     |
| O2—C19—C20—C21  | -179.6 (2) | C38—C37—N2—C36  | 179.0 (2)    |
| C18—C19—C20—C21 | 0.0 (4)    | C23—C36—N2—C37  | 0.7 (2)      |
| C17—C16—C21—C20 | -0.8 (3)   | C35-C36-N2-C37  | -178.8 (2)   |
| C15-C16-C21-C20 | -179.1 (2) | N4-C15-N3-C14   | -0.1 (2)     |
| C19—C20—C21—C16 | 0.4 (3)    | C16-C15-N3-C14  | 179.96 (19)  |
| C36—C23—C24—C25 | 178.9 (2)  | C1-C14-N3-C15   | 0.0 (2)      |
| N1-C23-C24-C25  | -1.3 (4)   | C13-C14-N3-C15  | 179.8 (2)    |
| C36—C23—C24—C29 | -1.9 (3)   | N3-C15-N4-C1    | 0.2 (2)      |
| N1-C23-C24-C29  | 178.0 (2)  | C16—C15—N4—C1   | -179.91 (19) |
| C29—C24—C25—C26 | -1.5 (4)   | C14—C1—N4—C15   | -0.2 (2)     |
| C23—C24—C25—C26 | 177.7 (2)  | C2-C1-N4-C15    | 178.8 (2)    |
| C24—C25—C26—C27 | 0.6 (4)    | C42—C41—O1—C44  | 178.5 (3)    |
| C25—C26—C27—C28 | 1.2 (5)    | C40—C41—O1—C44  | -0.6 (5)     |
| C26—C27—C28—C29 | -2.1 (4)   | C20-C19-O2-C22  | 2.7 (4)      |
| C27—C28—C29—C24 | 1.2 (4)    | C18—C19—O2—C22  | -176.9 (2)   |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                                                        | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |  |
|--------------------------------------------------------------------------------|-------------|--------------|--------------|------------|--|
| O4—H4A…N4 <sup>i</sup>                                                         | 0.82        | 1.94         | 2.755 (2)    | 173        |  |
| O3—H3A···N2 <sup>ii</sup>                                                      | 0.82        | 1.95         | 2.768 (2)    | 175        |  |
| N3—H3···O3                                                                     | 0.86        | 1.99         | 2.840 (3)    | 168        |  |
| N1—H1…O4                                                                       | 0.86        | 1.98         | 2.825 (2)    | 166        |  |
| Symmetry codes: (i) $-x+1/2$ , $-y+1/2$ , $-z$ ; (ii) $-x+1$ , $-y+1$ , $-z$ . |             |              |              |            |  |







